丨搜索

新闻动态
NEWS CENTER
新闻动态

铝电解电容器温度,纹波电流 ,ESR与损耗

  • 分类:新闻资讯
  • 作者:
  • 来源:
  • 发布时间:2024-01-31
  • 访问量:533

【概要描述】铝电解电容温度,纹波电流,ESR,损耗

工作温度范围  Operating Temperature Range 

它是环境温度范围,在这个温度下电容被设计能持续工作. 很大程度上化成电压决定了高温限制值. 低温限制值很大程度上由电解液的低温电阻系数所决定. 105 ℃等级的化成电压要高于85 ℃.所以105 ℃ 等级的电容比85 ℃的电容具有更长的寿命 或更高的承受纹波电流的能力. 

纹波电流  Ripple Current 

纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样. 纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命. 

最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了. 

纹波电流的技术规格  Ripple current specification 

纹波电流是由在额定温度下获得希望的温升所决定的. 

通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃. 

通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃. 

纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同. 

功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗. 

这有一个例子,对于4700uF,450V,直径为3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2(388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03) 

像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量. 

纹波电流的温度特性  Ripple current temperature characteristics 

对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即: 

纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2 

高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损. 

纹波电流的频率特性  Ripple current frequency characteristics 

工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗. 

电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足. 

实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点. 

涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感. 

等效串联电阻  Equivalent Series Resistance 

等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联. 

用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压. 

ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大 ESR愈低. 

当容量固定时,选用高额定电压的品种可以降低 ESR. 

低频时ESR高, 高频时ESR低, 高温也会使ESR上升. 

ESR的测量  ESR measurement 

对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电. 

ESR的温度特性  ESR Temperature characteristics 

ESR随温度的的增加而降低. 

从25℃到限制的最高温度ESR大约降低35%到50%. 

但是在限制的最低温度时ESR的增加超过10倍. 

对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍. 

ESR的频率特性  ESR Frequency characteristics 

像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟: 

ESR=10,000(DFif) /2лfC +ESRhf 

用ESR来表示,在低频时ESR随着频率的增加稳定的下降, 

关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器. 

 损耗因数- Dissipation Factor(DF) 

Tan&  (损耗角正切) 

在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为 Tan& ,其测量条件与电容量相同. 

Tan&=R(ESR)/(1/ wC)= wC R(ESR) 

其中:R(ESR)= ESR(120HZ) w =2 X 3.14 f 

F= 120Hz 

Tan& 随着测量频率的增加而变大,随着测量温度的下降而增大. 

损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示: 

DF=2лfC(ESR)/10,000 

DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω. 

DF的测试  DF measurement 

DF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关. 

DF的温度特性  DF Temperature characteristics 

损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍. 

DF的频率特性  DF Frequency characteristics、 

损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟: 

DF=DFif+2лfC(ESRhf)/10,000 

DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低. 

上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多. 

DF值是高还是低,与温度、容量、电压、频率……都有关系; 

当容量相同时,耐压愈高,DF值就愈低. 

频率愈高,DF值愈高, 温度愈高, DF值也愈高. 

DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方 面并无不妥,但从DF值方面考虑就欠缺一些.使用63V或71V耐压的会有更好的表现的.当然 再高了性价比上就不合算了. 

含浸  Impregnation 

电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容. 

在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时,水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出. 

铝电解电容器温度,纹波电流 ,ESR与损耗

【概要描述】铝电解电容温度,纹波电流,ESR,损耗

工作温度范围  Operating Temperature Range 

它是环境温度范围,在这个温度下电容被设计能持续工作. 很大程度上化成电压决定了高温限制值. 低温限制值很大程度上由电解液的低温电阻系数所决定. 105 ℃等级的化成电压要高于85 ℃.所以105 ℃ 等级的电容比85 ℃的电容具有更长的寿命 或更高的承受纹波电流的能力. 

纹波电流  Ripple Current 

纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样. 纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命. 

最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了. 

纹波电流的技术规格  Ripple current specification 

纹波电流是由在额定温度下获得希望的温升所决定的. 

通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃. 

通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃. 

纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同. 

功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗. 

这有一个例子,对于4700uF,450V,直径为3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2(388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03) 

像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量. 

纹波电流的温度特性  Ripple current temperature characteristics 

对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即: 

纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2 

高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损. 

纹波电流的频率特性  Ripple current frequency characteristics 

工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗. 

电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足. 

实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点. 

涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感. 

等效串联电阻  Equivalent Series Resistance 

等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联. 

用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压. 

ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大 ESR愈低. 

当容量固定时,选用高额定电压的品种可以降低 ESR. 

低频时ESR高, 高频时ESR低, 高温也会使ESR上升. 

ESR的测量  ESR measurement 

对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电. 

ESR的温度特性  ESR Temperature characteristics 

ESR随温度的的增加而降低. 

从25℃到限制的最高温度ESR大约降低35%到50%. 

但是在限制的最低温度时ESR的增加超过10倍. 

对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍. 

ESR的频率特性  ESR Frequency characteristics 

像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟: 

ESR=10,000(DFif) /2лfC +ESRhf 

用ESR来表示,在低频时ESR随着频率的增加稳定的下降, 

关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器. 

 损耗因数- Dissipation Factor(DF) 

Tan&  (损耗角正切) 

在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为 Tan& ,其测量条件与电容量相同. 

Tan&=R(ESR)/(1/ wC)= wC R(ESR) 

其中:R(ESR)= ESR(120HZ) w =2 X 3.14 f 

F= 120Hz 

Tan& 随着测量频率的增加而变大,随着测量温度的下降而增大. 

损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示: 

DF=2лfC(ESR)/10,000 

DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω. 

DF的测试  DF measurement 

DF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关. 

DF的温度特性  DF Temperature characteristics 

损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍. 

DF的频率特性  DF Frequency characteristics、 

损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟: 

DF=DFif+2лfC(ESRhf)/10,000 

DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低. 

上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多. 

DF值是高还是低,与温度、容量、电压、频率……都有关系; 

当容量相同时,耐压愈高,DF值就愈低. 

频率愈高,DF值愈高, 温度愈高, DF值也愈高. 

DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方 面并无不妥,但从DF值方面考虑就欠缺一些.使用63V或71V耐压的会有更好的表现的.当然 再高了性价比上就不合算了. 

含浸  Impregnation 

电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容. 

在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时,水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出. 

  • 分类:新闻资讯
  • 作者:
  • 来源:
  • 发布时间:2024-01-31
  • 访问量:533
详情

铝电解电容温度,纹波电流,ESR,损耗

工作温度范围  Operating Temperature Range 

它是环境温度范围,在这个温度下电容被设计能持续工作. 很大程度上化成电压决定了高温限制值. 低温限制值很大程度上由电解液的低温电阻系数所决定. 105 ℃等级的化成电压要高于85 ℃.所以105 ℃ 等级的电容比85 ℃的电容具有更长的寿命 或更高的承受纹波电流的能力. 

纹波电流  Ripple Current 

纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样. 纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命. 

最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了. 

纹波电流的技术规格  Ripple current specification 

纹波电流是由在额定温度下获得希望的温升所决定的. 

通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃. 

通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃. 

纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同. 

功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗. 

这有一个例子,对于4700uF,450V,直径为3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2(388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03) 

像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量. 

纹波电流的温度特性  Ripple current temperature characteristics 

对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即: 

纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2 

高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损. 

纹波电流的频率特性  Ripple current frequency characteristics 

工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗. 

电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足. 

实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点. 

涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感. 

等效串联电阻  Equivalent Series Resistance 

等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联. 

用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压. 

ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大 ESR愈低. 

当容量固定时,选用高额定电压的品种可以降低 ESR. 

低频时ESR高, 高频时ESR低, 高温也会使ESR上升. 

ESR的测量  ESR measurement 

对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电. 

ESR的温度特性  ESR Temperature characteristics 

ESR随温度的的增加而降低. 

从25℃到限制的最高温度ESR大约降低35%到50%. 

但是在限制的最低温度时ESR的增加超过10倍. 

对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍. 

ESR的频率特性  ESR Frequency characteristics 

像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟: 

ESR=10,000(DFif) /2лfC +ESRhf 

用ESR来表示,在低频时ESR随着频率的增加稳定的下降, 

关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器. 

 损耗因数- Dissipation Factor(DF) 

Tan&  (损耗角正切) 

在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为 Tan& ,其测量条件与电容量相同. 

Tan&=R(ESR)/(1/ wC)= wC R(ESR) 

其中:R(ESR)= ESR(120HZ) w =2 X 3.14 f 

F= 120Hz 

Tan& 随着测量频率的增加而变大,随着测量温度的下降而增大. 

损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示: 

DF=2лfC(ESR)/10,000 

DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω. 

DF的测试  DF measurement 

DF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关. 

DF的温度特性  DF Temperature characteristics 

损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍. 

DF的频率特性  DF Frequency characteristics、 

损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟: 

DF=DFif+2лfC(ESRhf)/10,000 

DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低. 

上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多. 

DF值是高还是低,与温度、容量、电压、频率……都有关系; 

当容量相同时,耐压愈高,DF值就愈低. 

频率愈高,DF值愈高, 温度愈高, DF值也愈高. 

DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方 面并无不妥,但从DF值方面考虑就欠缺一些.使用63V或71V耐压的会有更好的表现的.当然 再高了性价比上就不合算了. 

含浸  Impregnation 

电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容. 

在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时,水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出. 

关键词:

扫二维码用手机看

苏州海之源电子有限公司

海之源

客户满意是检验产品质量的唯一标准。倾听客户的心声,把握客户的需求,以客户满意来定义质量标准,尽一切办法提高客户满意度和忠诚度。坚持第一次就把事情做对,尽力为客户提供完美的产品与服务。

版权所有 © 2019 苏州海之源电子有限公司  All Rights Reserved    备案号: 苏ICP备19073671号-1    网站建设:中企动力 苏州

版权所有 © 2019 苏州海之源电子有限公司

备案号:  苏ICP备11032634号

网站建设:中企动力 苏州